A Survey on Probabilistic Programming in the Context of
Neural Networks

Xingyu Li, Zekun Zhao

Department of Computer Science, BSOE,
University of California, Santa Cruz

{2li279, 2zha099} Qucsc.edu

Abstract

This report concerns the cooperation of Probabilistic Programming with Deep Neural
Network, which is an emerging application of Probabilistic Programming. First, the basic
ideas and methods of these two fields are briefly reviewed. Then, we turn to the general
discussion of the cooperation, including its benefits, ways of implementation and the re-
quirements thus posted on the Probabilistic Programming side. Finally, we show more
details about two popular schemes of implementing the cooperation as well as describing
and comparing existing Probabilistic Programming frameworks that are able to implement
such cooperation.

1 Introduction

As an emerging area in the field of Programming Language, Probabilistic Programming[1],
gains increasing popularity recently and lots of related frameworks have been developed, such
as Stan (2, 3|, pyro [4] and Edward [5, 6] just to name a few. In Probabilistic Programming,
one adopts a distinct view towards the probabilistic components in a program, treating the
probabilistic distribution as a basic building block and providing a concise syntax to define
generative models and to do inference. In this way, Probabilistic programming systems abstract
away many difficulties in implementing sampling and inference algorithms and enables people
to talk about statistic modeling more intuitively.

Also, we observe that the celebrated Deep Neural Networks models are highly related to the
probabilistic inference. For example, in Variational Auto-Encoder (VAE) [7] model, the neural
network learns the probabilistic distributions of each categories and the objective is practically
the K-L divergence between the learned posterior and the true one. Hence, it would be beneficial
to use Probabilistic Programming Language in describing neural network models.

In this project we surveyed Probabilistic Programming in the context of Deep Neural Net-
works. We found these two highly related fields do not share an inclusive relation, rather they
are complementary to each other. We definitely realized that this short report can never serve
as a comprehensive survey on this two broad field. Actually a quarter is far from enough for
us to go through even just a part of related materials. We then decided to focus more on the
high level ideas and principles, aiming to illustrate the underlying picture of how Probabilistic
Programming and the Neural Network models can help to augment each other.

This report is organized as follow. In the next two sections, we briefly review the present
state of Probabilistic Programming and Deep Neural Networks, reviewing their focus, pros
and cons. Then, section 4 is devoted to the topics of why this two field can help each other
and how can one combines the two. We also include a simple discussion on the requirements
posted on the design of syntax when the Probabilistic Programming frame work is adapted to
describe the Deep Neural Network models. In section 5, we present the two most popular and
promising schemes of combining Probabilistic Programming with Deep Neural Networks, and

use examples to illustrated how they work. Finally, we reflect and conclude all the knowledge
we learned during this project.

2 Probabilistic Programming in a nutshell [1]

Bayesian inference lies at the heart of probabilistic modeling, and Probabilistic Programming
provides a framework that hides the complexity of doing Bayesian inference. There are several
aspects of this framework, including the design of syntax, evaluator (the sampling and inference
algorithms) and interpreter or compiler. In this report, we only investigate the first two.

From a user’s viewpoint, the magic of Probabilistic Programming owns directly to the combi-
nation of concise syntax and sophisticated evaluator, which makes the tasks of complex sampling
and inference as simple as pressing a button. Note that, in order to make Probabilistic Program-
ming practical, it is naturally to require the sampling and inference algorithms to be general
and applicable to any possible case in practice.

2.1 Syntax

Instead of building the whole framework from scratch, most existing Probabilistic Programming
Languages extend other sophisticated Programming Languages [], such as C and Python, by
adding features to the original syntax.

There are two key features that must be included in the definition of the syntax for a Proba-
bilistic Programming Language, namely the sample and infer. The sample takes a distribution
object as input and returns a sampled value; The infer accepts two input arguments, one is a
distribution object, and the other is a (or an array of) observed values. It evaluates the posterior
distribution given those observed values. For example (see ref [1] for details)

(let [data [1.1 2.1 2.0 1.9 0.0 -0.1 -0.05]

likes (foreach 3 []
(let [mu (sample (normal 0.0 10.0))
sigma (sample (gamma 1.0 1.0))]
(normal mu sigma)))
pi (sample (dirichlet [1.0 1.0 1.01))
z-prior (discrete pi)]
(foreach 7 [y datal
(let [z (sample z-prior)]

(observe (get likes z) y)
z)))

Figure 1: An example of a Gaussian Mix Model in a First Order Probabilistic Programming
Language.

In above example, we see that one can easily sample from any distribution using an intuitive
syntax, sample (dist params), where (dist params) defines the target distribution with pa-
rameters. For the inference part, observe does the same job as the infer, and the syntax is
observe (dist params) vals, where vals indicates the observed values that we are inferring
on.

2.2 Sampling and Inference Algorithms

In this subsection, we briefly describe the basic ideas of some widely used sampling and infer-
ence algorithms in Probabilistic Programming. One can see that the sampling and inference
algorithms are intrinsically interconnected. Actually, to do inference, one needs to estimate the
present distribution somehow, which in turn requires some sorts of sampling algorithms or their
equivalent.

The popular inference algorithms mainly fall into the following two categories:

e Sample-based Inference The sample-based methods exploit the empirical estimate of
expectations, i.e.

Blf(@) = [fa)P@)de~ 3 fa)

where f is the target function and {z;} are samples from distribution P(z). The naive
sampling methods (e.g. reject sampling) are very inefficient. One main alternative to
them is the Markov Chain Monte Carlo (MCMC) sampling methods, among which the
Metropolis Hastings sampling, Gibbs sampling and Hamiltonian Monte Carlo sampling
are well-known examples. In MCMC, a Markov chain is used to generate the next sample
based on the current one, making it more likely to stay in densely packed probability
regions. Even though it can provide accurate estimation, the MCMC methods are often
too slow for problems with rich structure or internet-scale data.

e Variational Inference The Variational methods are usually much faster than the MCMC
methods, nonetheless they provide only approximate estimates. The idea is that instead of
the whole function space, one choose a smaller family of functions (usually paremeterized in
a way amenable to efficient optimization procedures), and approximate the true posterior
within this function family. One key aspect of variational inference methods is how to
measure the “distance” between the approximate posterior and the true one. In practice,
one usually adopts a distance of f-divergence form, e.g. K-L divergence.

In practice, those sampling and inference algorithms are sealed by carefully designed syntax,
such as the one shown in the example of the previous section. Once you use infer on target
distribution, the program will automatically call the build-in inference algorithms for you. This
kind of auto-inference technique plays exactly the same role as the auto-differentiation in the
Deep Neural Network frameworks.

3 Deep Neural Network in a nutshell

In Fig. 2 below, we illustrate the typical structure of a Deep Neural Network model. Generally,
they consist of three components: the training data, which is samples from the target distribu-
tion; a predefined network architecture (we use fully-connected layer in the figure, but it can be
way more complex); and the Loss function, which is the optimization objective.

\ Back Propagation

P(X,Y) 8 L(G(x),y)

Figure 2: Illustration of a typical Deep Neural Network model.

The power of Deep Neural Network models comes from their ability of learning (or training).
There are a bunch of learnable parameters in the network, and their size could be even much
bigger than the training data size. This is the base of the Neural Network being able to adapt
to the training dataset. During the training process, the data is fed into the network and the
loss function is calculated. Then, the tuning of those parameters is guided by the optimization
of the loss function. Through back propagation, the amount of update for each parameter is

passed back to the network, and thus complete the circle of one training step. In practice, the
training step is executed repeatedly until the loss converges.

Though, at first look, the Deep Neural Network is quite different from the probabilistic
model, we can in fact observe many similarities. The Perceptron model in Deep Neural Network
turns out to be equivalent to the Logistic Regression model in statistic, and minimizing the mean
squared error loss function is nothing but maximizing the likelihood of observing the training
data. For more complex models, the relations are not so obvious, however, in general, one may
identify:

e the learning process of Deep Neural Network is a kind of inference process. That is, based
on the observations (training data), back propagation helps to infer the underlying model
(update parameters).

e in many cases, the target of training can be interpreted as the effort to grasp the training
data’s distribution P(X,Y"), so that one can make accurate predictions. In this sense, the
network itself can be viewed as modeling a conditional distribution P(Y'|X), where Y is
the output of the Deep Neural Network model.

Of course, there are also striking difference between the Deep Neural Network and Proba-
bilistic models. For example, the Gradient Descent is pretty much irrelevant to the Bayesian
inference. And, in Deep Neural Network, the prediction are always a point estimate, whereas
in Probabilistic models one can talk about the uncertainty of the predictions.

4 Cooperation of the Probabilistic Programming and Deep
Neural Network

From the brief reviews about the Probabilistic Programming and Deep Neural Network, we saw
that both of them concern about inference and probabilistic distributions. One may expect
that it is possible to combine the two fields together despite their distinctions. A close look
reveals such a cooperation might even bring a kind of more powerful model that possesses the
advantages of both sides.

4.1 What is the benefit of the cooperation? [8]

It is worthy to list the pros and cons of Probabilistic Programming and the Deep Neural Network
for further comparison. For the Probabilistic Programming side, we see

e the predefined probabilistic model guide the inference on the observed data, which results
in a structured representation. In this way, the model can exploit the data more efficiently
and its results are more interpretable.

e another desirable feature of probabilistic models is they explicitly model the uncertainty
of predictions, which tells how sure or unsure the model is.

e on the other hand, since probabilistic models adopt rigid assumptions, they may not be
able to adapt to the data set they are working on. In practice, people often need feature
engineering to help improve the performance of probabilistic models.

For the Deep Neural Network side

e the biggest defect of Deep Neural Network models is they are largely black box. The lack
of explainablity has limited their application in many areas, such as Medicine. Further, it
usually requires very large amount of data to train the Deep Neural Network model.

e we have mentioned in previous section that the Deep Neural Network models normally
only provide point estimate. Unable to capture the uncertainty of the model has limited
their generalizability.

e despite those defects, the Deep Neural Network models have very high capacity, and their
ability of auto feature extraction and model learning have won them the popularity in
both industry and academia.

Above lists are not a complete summary, however one is able to sense a close relation between
the Probabilistic Programming and Deep Neural Network: they seems to be just complementary.
Their advantages and disadvantages are corresponding to each other. So that it is possible to
combine them to form a new model that not only explainable but also flexible; not only can
automatically extract features from data but also being able to grasp the uncertainty of the
prediction.

4.2 How to implement the cooperation? [9, 10, 11, 12, 8]

The next question is how can one realize the cooperation. People have already done a lot
works in this direction. From literature, we find the methods mainly fall into the following two
frameworks:

1 one simply turns all the parameters (weights) of a neural network into random variables.
In this way, the conventional Deep Neural Network model is transformed into a proba-
bilistic model, on which one can do inference using existing Probabilistic Programming
frameworks. This method is known as the Bayesian Neural Network (BNN). As a prob-
abilistic model, it naturally assign uncertainty to its predictions. However, since now we
are learning the distribution of each parameter rather than simply a value, it is harder to
train the Bayesian Neural Network models.

2 one can also “concatenate” the two to form a new kind of models. The basic idea is to use
neural network to process data, then the automatically extracted features are passed to a
Probabilistic model which guides the inference. In practice, a framework of this kind has
been developed, which is called the Structured Variational AutoEncoder (SVAE).

We will dive into more details about this two frameworks in section 5.

4.3 Requirements on syntax and inference algorithms

It is noticed [6] that in order to combine the Probabilistic Programming with the Deep Neural
Network framework, there posts at least the following two requirements on the syntax and
inference algorithms of Probabilistic Programming:

1 compositionality on syntax for both model define and doing inference. This requirement
comes from the fact that, in practice, there is no constraint on the size and type of a
specific Deep Neural Network model. The only way out is to specify the model define
and inference on model “building blocks”, and then gradually compose them to form more
complex models.

dbeta = PointMass (params=tf.Variable(tf.zeros([K, D])))
gz = Categorical (logits=tf.Variable(tf.zeros ([N, K])))

inference_e = ed.VariationalInference({z: gz}, data={x: x_train, beta: gbeta})
inference m = ed.MAP ({beta: gbeta}, data={x: x_train, z: gz})

Figure 3: An example from Edward. Illustration of composing inference.

Fig. 3 shows an example from ref [6], it is a part of the realization of Expectation maxi-
mization algorithm in Edward, and Edward is a Probabilistic Programming Language that
support compositional representations of both random variable and inference. From the
example, we see one can first infer on z based on observed data x and beta. Then, z can
be treated as data to infer on beta.

2 the inference algorithms used must be adapted to rapid and repeated inference. Unlike
the inference in traditional probabilistic models, Deep Neural Network models are usually
applied on very large dataset. Further, one need to keep doing inference on the training
set iteratively, until the model converges. Thus the efficiency is a key, and the variational
inference algorithms become popular choices.

5 Application

5.1 Mechanism
5.1.1 Bayesian Neural Network [9, 12]

Compared with deep neural network, bayesian neural network can offers uncertainty estimates
via its parameters in form of probability distributions instead of just single point-estimates. From
a probability theory perspective, bayesian neural network are more robust to over-fitting, and
can easily learn from small datasets. At the same time, by using a prior probability distribution
to integrate out the parameters, the average is computed across many models during training,
which gives a regularization effect to the network, thus preventing over-fitting and give us a
measure of uncertainty in the prediction. But inferring model posterior in a Bayesian neural
network is a difficult task in both theory and computational cost.

P(x]0)P(0)

P(x)

The goal of applying Bayes theorem in neural network model is to find the probability 8 for
any given data x. This is exactly the result from the calculated posterior of Bayes theorem. We
define P(6) as our prior, P(x|6) as the likelihood and tells us the data distribution, P(z) is the
observed result(also named as evidence).

P(z) = /P(Jc,@)d@

To calculated this, we need to integrating all possible model values which causes the whole
solution intractable. The current popular way of solving this is to use Variational inference
to approximate the functional form. In their work [12], the author introduces the idea of
applying two convolutional operations, one for the mean and one for the variance for Bayesian
Convolutional Neural Network.

Generally, People design special loss function in deep neural network for different optimizing
purpose, which is easy to do in a well-defined framework nowadays, like keras, tensorflow and
pytorch. However, it is not intuitive that how to use that in a Bayesian Neural Network. The
classical way to measure loss in a Bayesian Neural Network is to minimise the Kullback—Leibler
(KL) divergence, which is intuitively a measure of similarity between two distributions, but it is
not clear that how to change the formate of this measurement to match existing loss functions.

P|z) =

5.1.2 Structured Variational Auto-Encoder [8, 11, 10]

Structured Variational AutoEncoders (SVAE) is a popular example of Deep probabilistic mod-
els instead of integrating reasoning capabilities into a complex neural network architecture, it
uses Neural Network to extract features from the observed data, and do/guide inference using
probabilistic model.

The task is learning a vector-space representation z for each observed data point z (e.g., a
handwritten digit in the the classic MNIST dataset). The computed representation can then
be use as input of other models (e.g., a classifier). Each data point = depends on the latent
representation z in a complex non-linear way, via a deep neural network: the decoder. The top
half of Figure 4 shows the corresponding graphical model. The output of the decoder is a vector
1 that parameterizes a Bernoulli distribution over each pixel in the image x. Each pixel is thus
associated to a probability of being present in the image. The parameter € of the decoder is
global (i.e., shared by all data points).

0 decoder

model py(x | 2) u'
AL

(OF
guide g4(z | x) S
_

encoder

| A2

Figure 4: Graphical model of the SVAE (model and guide).

5.2 Existing Languages

This section uses examples to illustrate several popular deep probabilistic languages which enable
explicit variational inference and probabilistic models that involve deep neural networks.

5.2.1 STAN and DeepSTAN [2, 3]

data {
int Nj;

int<lower=0,upper=1> x[N]; e
}

parameters {

real<lower=0,upper=1> z;

}

model { G
z ~ Beta(l, 1);

x ~ Bernoulli(z);

}

Figure 5: Learning the bias of a coin in Stan.

Stan is a popular high-level probabilistic programming language but lacks of concise, high-
level, and clean ways to express deep probabilistic models. Figure 5 shows a simple Stan program
from Section 2 of the Stan manual [13]. The program estimates the bias of a coin from a set of
coin tosses.

The “data” block introduces observations, which are placeholders for concrete data to be
provided as input to the inference procedure. The “parameters” block introduces latent random
variables, which will not be provided and must be inferred. The “model” block describes the
model. It places a Beta(l, 1) (i.e., uniform) prior on z, that is, initially z can take all values
between 0 and 1 with equal probability.

To overcome these drawbacks and since training deep probabilistic models works best with
variational inference, previous work [3] implements DeepStan which add these extensions by
translating Stan programs to Pyro. Pyro embraces deep neural nets and currently focuses on
variational inference. Pyro doesn’t do MCMC yet. Whereas Stan models are written in the Stan
language, Pyro models are just python programs with pyro.sample() statements. In DeepStan,
they considered three goals to achieve : 1, Extending Stan for variational inference with high-
level but explicit guides. 2,Extending Stan with a clean interface to neural networks written
in Python.3,A compiler from Stan to Pyro that carefully chooses the appropriate sampling
semantics. Considering the scope of topics, we will only discuss the first and second part briefly
here.

To allow the user to design their own guide, DeepStan extends Stan with two new blocks:
“guide parameters” and “guide”. The “guide” block defines a distribution parameterized by
the “guide parameters”. Variational inference then optimizes the values of these parameters to
approximate the true posterior.

networks {
Decoder decoder;
Encoder encoder;
}
data {
int<lower=0, upper=1> x[28, 28];
}
parameters {
real z[_];
}
model {
real mul[_, _];
z ~ Normal (0, 1);
mu = decoder(z);
X ~ Bernoulli (mu);

}

guide {
real encoded[2, _] = encoder(x);
real mu_z[_] = encoded[l];
real sigma_z[_] = encoded[2];

z ~ Normal (mu_z, sigma_z);

}

Figure 6: Variational Auto-Encoder (VAE) in DeepSTAN.

The main idea of the VAE is to use variational inference to learn the latent representation.
In Figure 6, Block “networks” declares neural networks at the beginning of the pipeline. Blocks
“guide” parameters and guide specify an explicit guide for variational inference after the model.

DeepStan also extends the grammar of Stan. As in Stan, a program is a succession of blocks.
Objects defined in one block can be used in subsequent blocks.

program = nets? funs? data? tdata? params? tparams?
model gparams? guide? generated?

nets := networks { ndeclx }

gparams = guide parameters { vdeclx }

guide ;= guide { vdecl* stmts* }

ndecl := className var ;

Figure 7: Syntax of the language extensions.

The non-terminal funs, data, tdata, params, tparams, andgquant corresponds to the original
Stan blocks (respectively functions, data, transformed data, parameters, transformed parame-
ters, and generated quantities). The only mandatory block is model. The non-terminals vdecl
and stmt corresponds to variable declarations (type, name, dimensions) and statements.

5.2.2 ProbLog and DeepProbLog [11, 10]

From an existing probabilistic logic programming language, ProbLog, which can be regarded
as a very expressive directed graphical modeling language. DeepProbLog extend it with the
capability to process neural predicates. The idea is simple: in a probabilistic logic, atomic
expressions of the form q(t1, ..., tn) (aka tuples in a relational database) have a probability
p. Consequently, the output of neural network components can be encapsulated in the form of
“neural” predicates as long as the output of the neural network on an atomic expression can be
interpreted as a probability. The new language is called as DeepProbLog.

One important extension for DeepProblLog is called as a set of ground neural annotated
disjunctions (ADs) of the form :

nn(mq,t_:ﬁ) ::q(t,ul);...;q(t_:un) :=b1,..., by

T
¥
T
[ITTTT]
LT

Query
win

side(coint,$1) | |side(coint, heads)

Program side(coin2,52) | |side(coin2, tails)
Flip(eoan). | srounding Ground -rewrite / P.vp [Loss
:- heads. g
Win i \sheads, red. Program ||_compilation LvlL

L)

(a) The learning pipeline.

flip (coinl). flip (coin2).
nn(m-side ,C,[heads , tails]):: side (C, heads); side (C, tails).| |
t(0.5)::red;t(0.5):: blue. .
heads :— flip (X), side(X,heads).
win :— heads. T 'K} 7
win :— \+heads, red. i -1.8,0,0,0,0 |
query (win).

[side(coin2, heads)][—side(coin2, heads) ‘

T 6.2 o 0.8 v
L._8.0,1,800 ! { 8,8,-1,0,0,0 | 0,0,

(b) The DeepProbLog program. (c) SDD for query win.

Figure 8: Parameter learning in DeepProbLog.

For instance, in the MNIST addition example, we would specify the nAD :
nn (M gigit , Pic(5), [0, ..., 9]) = digit(pic(5),0);. . . ; digit(pic(5),9)

where m gigit is a network that probabilistically classifies MNIST digits. digit(pic(5),0)
is the corresponding neural predicate. DeepProbLog is a probabilistic logic programming lan-
guage that incorporates deep learning by means of neural predicates. As a framework where
general-purpose neural networks and expressive probabilistic-logical modeling and reasoning are
integrated in a way that exploits the full expressiveness and strengths of both worlds and can
be trained end-to-end based on examples. Compared with the mechanism of Bayesian Neural
Network, the inference of DeepProbLog closely follows ProbLog and also use gradient descent
for allowing the seamless integration with neural network training.

5.2.3 Other Languages [4, 5, 6]

Pyro is a probabilistic programming language built on Python as a platform for developing
advanced probabilistic models in deep learning framework. To scale to large data sets and
high-dimensional models, Pyro uses stochastic variational inference algorithms and probability
distributions built on top of PyTorch. To accommodate complex or model-specific algorithmic
behavior, Pyro leverages Poutine, a library of composable building blocks for modifying the
behavior of probabilistic programs.

Edward is a probabilistic modeling library firstly been introduced in 2017 which builds on
top of TensorFlow to support distributed training and hardware such as GPUs. Compared with
Stan and other previous works, it enables the development of complex probabilistic models and
their algorithms at a massive scale.

Edward2 is a distillation of Edward. It is a low-level language for specifying probabilistic
models as programs and manipulating their computation. Probabilistic inference, criticism,
and any other part of the scientific process use arbitrary TensorFlow ops. Their associated
abstractions live in the TensorFlow ecosystem such as in TensorFlow Probability, and do not
strictly require Edward2.

6 Summary

In this project we have surveyed on the Probabilistic Programming in the context of Deep Neural
Networks, focusing on the cooperation of this two fields. During the survey, we have learned a lot
about the key ideas, methods and sampling/inference algorithms used in Probabilistic Program-
ming. Further, we realized that the Probabilistic Programming (the probabilistic modeling) and
Deep Neural Network are related and complementary. Combining the two could a path that may
leads to more powerful models in the future. Through the study of concrete examples, we also
get more familiar with the existing popular Probabilistic Programming Language frameworks,
such as Stan, Edward and DeepProLog. We do realize that our report is not strong enough in
the “language design” aspect. This is partly due to the fact that most works concerns develop
a comprehensive framework for the general Probabilistic Programming rather than focus on the
specific direction of combining the Probabilistic Programming with the Deep Neural Network
models. However, this direction is getting more and more popular, we believe that after this
project we have prepared a good background for getting deeper into the research works in this
direction.

A code description

We successfully test the Bayesian Neural Network (BNN) model and Structured Variational
AutoEncoder (SVAE) model in Pyro framework. Here is the link to the code: https://github.
com/kriszhao/Pyro_BNN_SVAE/tree/6b775891dccc829ae91b7cb569d3d7483345f84.

We have tried to implement both above models in DeepStan and DeepProbLog. It turns
out there are issues with the dependent lib (PySDD; in the Deep ProbLog case) and we
find that the present version of TensorFlow conflicts with the Edward (cannot import name
'set_shapes_for_outputs’). We have tried very hard to fix the environment, however, due to the
limit of time, fail to resolve the problems. In the end, we decided to read and running existing
codes. We list their links in the footnote!?2.

We believe that even though both implemented models only use the fully-connected layers
(or equivalently, the Dense layers), they are sufficient to illustrate how to write down a model
that combines both Probabilistic model and Deep Neural Network model using the Probabilistic
Programming language.

References

[1] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An Introduc-
tion to Probabilistic Programming. sep 2018.

[2] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jigiang Guo, Peter Li, and Allen Riddell. Stan : A Proba-
bilistic Programming Language. Journal of Statistical Software, 76(1), 2017.

[3] Javier Burroni, Guillaume Baudart, Louis Mandel, Martin Hirzel, and Avraham Shinnar.
Extending Stan for Deep Probabilistic Programming. pages 1-11, 2018.

[4] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. arXiv preprint arXiv:1810.09538, 2018.

[5] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M.
Blei. Edward: A library for probabilistic modeling, inference, and criticism. 2016.

[6] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and
David M. Blei. Deep Probabilistic Programming. pages 1-18, 2017.

Thttps://github.com/pyro-ppl/pyro/tree/d128c1ac51bbad00918844b20cef807df 1cd345e
?https://github. com/paraschopra/bayesian-neural-network-mnist/tree/249624681abce81d9a4ce52a9b293e02f 7abafds

10

[12]

[13]

14

[15]

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards Deeper Understanding of
Variational Autoencoding Models. 2017.

Matthew J. Johnson, David Duvenaud, Alexander B. Wiltschko, Sandeep R. Datta, and
Ryan P. Adams. Composing graphical models with neural networks for structured repre-
sentations and fast inference. (Nips), 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Un-
certainty in Neural Networks. 37, 2015.

Robin Manhaeve, Sebastijan Dumanci¢, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. DeepProbLog: Neural Probabilistic Logic Programming. 2018.

Hai Wang and Hoifung Poon. Deep Probabilistic Logic: A Unifying Framework for Indirect
Supervision. 2018.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A Comprehensive guide to Bayesian
Convolutional Neural Network with Variational Inference. pages 1-38, 2019.

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual,
Version 2.18.0, 2018.

Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in
Statistics. Springer New York, New York, NY, 1996.

Cam Davidson-Pilon. Bayesian Methods for Hackers. 2014.

11

