
Voting Loss function

Zekun Zhao

Department of Computer Science, BSOE,
University of California, Santa Cruz

{zzhao99}@ucsc.edu

Abstract

This report presents a novel methodology for measuring loss in machine learning al-
gorithm which using a voting mechanism to measure how bad our current estimate is in
respect to smoothness and accuracy. By introducing a voting mechanism, our loss function
allows algorithms built around robust loss minimization to be generalized in a high dimen-
sional feature space, which improves performance on basic regression tasks such as house
price prediction. We interpreter our loss as one regularization method to capture rich input
space features and to yield a general probability distribution that contains uncertainty of
our prediction result. In this work, we implement our loss function on house price data set,
which improves the prediction result. To explore more possibilities, we also show how the
prediction result got influenced by different shapes of the voting label. Finally, we describe
and visualize each loss function and its corresponding distribution, and document several
of their useful properties.

1 Introduction

1.1 What’s a loss function?

The loss function is a very important knowledge point in machine learning. It is used to estimate
the degree of inconsistency between the predicted value f(x) of the model and the true value y.
Our goal is to minimize the loss function and let f(x) be as close as possible to y. A gradient
descent algorithm can usually be used to find the function minimum.

There are many different types of loss functions. No loss function is suitable for all prob-
lems [1]. You need to choose according to the specific model and problem. In general, loss
functions can be roughly divided into two categories: Regression and Classification. We only
focus on solving regression problems in this report.

1.2 Different types and flavors of loss functions

We only summarize three important loss functions commonly used in regression problems here.
The three loss functions in the regression model include Mean Square Error (MSE), Mean
Absolute Error (MAE), Huber Loss.

• Mean Square Error The mean square error refers to the average of the square of the
distance between the model prediction value f(x) and the true sample value y.

MSE =
1

m

m∑
i=1

(yi − f (xi))
2

Where yi and xi represent the true and predicted values of the i-th sample, respectively,
and m is the number of samples.

The MSE curve is characterized by smooth continuous, steerable, and easy to use gradient
descent algorithm, which is a commonly used loss function. Moreover, as the error of

1

(a) Loss (Y-axis) vs. Y-f(x) (X-axis) (b) Fitting curve using MSE loss

(c) Fitting curve using MAE loss (d) Fitting curve using Huber loss

Figure 1: Comparison of three loss functions (To simplify the discussion for Fig 1a, we ignore the

subscript i, and let m = 1).

the MSE decreases, the gradient also decreases, which facilitates the convergence of the
function. Even if the learning factor is fixed, the function can obtain the minimum value
faster.

However, if there are outliers in the sample, MSE will give outlier given more weight, but
at the expense of other normal data points to predict the effect of the cost, which will
ultimately reduce the overall performance of the model. In Figure 1, it can be seen that
the MSE loss function is greatly affected by the outliers. Although there are only five
outliers in the sample, the fitted straight lines are more biased toward the outliers.

• Mean Absolute Error The average absolute error refers to the average of the distance
between the model prediction value f(x) and the sample true value y. Its formula is as
follows:

MAE =
1

m

m∑
i=1

|yi − f (xi)|

It is worth mentioning that MAE has an advantage over MSE that MAE is less sensitive
and inclusive to outliers. Because MAE calculates the absolute value of the error, there is
no square term effect, the penalty strength is the same, and the weight is the same.

Using the MAE loss function is less affected by the outliers, and the fitted line can better
characterize the distribution of normal data. At this point, MAE is better than MSE. The
comparison of the two is in Figure 1.

• Huber Loss Huber Loss ’s formula is as follows:

Lδ(y, f(x)) =

{
1
2 (y − f(x))2, |y − f(x)| ≤ δ
δ|y − f(x)| − 1

2δ
2, |y − f(x)| > δ

2

Huber Loss is a synthesis of above two loss functions, including a hyperparameter δ. The
magnitude of the δ value determines the emphasis of Huber Loss on MSE and MAE. When
|y−f(x)| ≤ δ , it becomes MSE; when |y−f(x)| > δ , it becomes similar with MAE. Huber
Loss combines the advantages of MSE and MAE to reduce the sensitivity to outliers and
achieve a versatile function. In general, the hyper parameter δ can be chosen to achieve
the best value by cross-validation. We take δ = 0.1, δ = 10, and draw the corresponding
Huber Loss in Figure 1.

Huber Loss When |y−f(x)| > δ, the gradient is always approximated as δ , which ensures
that the model updates the parameters at a faster rate. When |y−f(x)| ≤ δ, the gradient
gradually decreases, which ensures that the model obtains the global optimal value more
accurately. Therefore, Huber Loss has the advantages of the first two loss functions. It
can be seen that using Huber Loss as the activation function still has good immunity to
outliers, which is stronger than MSE.

2 Voting mechanism

2.1 Motivation

• Rich features [2] If a task is very noisy or data is limited and high-dimensional, it can be
difficult for a model to differentiate between relevant and irrelevant features. The neural
network can extract features very well and help the model focus its attention on those
features that matter for the task. Thus, if we capture more relevant features from our
training samples in the learning process, the prediction would generate a better result.

• Regularization [3] Regularization is one of the many means to prevent over-fitting and
is very common. By limiting the spatial parameter range, explicitly control the complexity
of the model, thereby avoiding over-fitting.

• Bias As for the bias, this motivation comes from two previous experiments [4] done by
David Parks. In the Astronomy work, it had a strong bias at the tail ends of the data. In
another instance (a simple face detection model) where it outputs the X and Y coordinates
of a bounding box center which tracked a face in the image, it performed progressively
worse the closer to the edges the faces got. In both of the cases above, there are alternative
explanations that might be the actual root cause. However, it was enough circumstantial
evidence for us to consider the possibility that square error was the issue. It it does seem
logical that bias might exist because the network will not make errors in the output above
or below the maximum range it ever saw in training, so we should expect such a bias.

2.2 Main idea

Normally, we use yi and xi represent the true and predicted values of the i-th sample. But we
cannot use only one value to have a voting effect in the learning process. Thus, in the voting
loss function, we have converted our label to a high dimension. According to our motivations,
there are several aspects we need to consider when we convert our label dimension: 1, Richer
features. 2, Preventing over-fitting. 3, Eliminating the bias in the model. It is always better to
use examples to illustrate new ideas. Here, we pick number 600 as our label (true values of the
i-th sample).

Example of converting label to higher dimension in voting loss function first, we initialize a
vector of length n (n = 2 ∗mask + r) , where “r” is the range of possible values of our samples
and “mask” is a hyperparameter which we choose mask as 0.3 ∗ r. This vector will become our
converted label after the later process and the initial vector is all zero for each index value.

Then, we set values for this vector. Around the index yi, value of index yi in our vector is
zero and value of index yi + d in our vector is d, where −mask ≤ d ≤ mask. In addition, we
need to set a special value k around the end of each two side of index yi−mask and yi +mask.
This process is because we do not want to penalize the predicted value in these index.

3

Figure 2: Example of converting label to higher dimension in voting loss function.

(a) (b)

(c) (d)

Figure 3: Process of converting label and making decision

Finally,one last thing need to do is that we have to make sure that we can implement one
voting function to convert the high dimension label back to our original label.

3 Experiment

In our experiment, we choose a house price data set, which contains 10 features: “bedrooms”,
“bathrooms”,“sqft lot”,“sqft living”,“sqft above”,“lat”,“long”,“sqft lot15”,“sqft living15”,“zipcode”
and 21605 smaples after we delete abnormal data values.

3.1 what is the benefit of voting?

• Smoothness Since our loss function has considered a higher dimension value from voting,
the result is smoother than just using point estimate evaluation.

4

(a) Voting loss (b) MSE loss (c) MAE loss

Figure 4: True (Y-axis) vs. Predictions (X-axis)

• Multitasking In our label space, we do not only use the right index to predict our true
value, but also use the information that which index is more relevant for making the final
decision.

• Uncertainty After train our model, our prediction is also an n-length vector. For each
sample label result, each voting index has a prediction, which actually can be desecrated
as a distribution for our result. In this case, we can show our model uncertainty for each
sample. One thing we need to mention here is that this uncertainty is not exactly the
measurement of uncertainty of model, but there is some relationship between them.

3.2 Other voting strategy

Except for the linear voting strategy we have mentioned previously, we also test two other
nonlinear voting strategy. Their converted shape are showing below:

(a) True label of log-voting (b) Prediction of log-voting (c) Smoothness of log-voting

(d) True label of exp-voting (e) Prediction of exp-voting (f) Smoothness of exp-voting

Figure 5: Comparison of log-voting loss and exp-voting loss functions (Fig 5c and Fig 5f show
True (Y-axis) vs. Predictions (X-axis) of log-voting and exp-voting loss)

From these different experiment results, we can see that in the same setting, the log voting
is better than exp voting. It makes sense for the neural network model, that dramatic value
change is hard for the neural network to learn. And this is also one part of the reason why we
use a mask parameter in our voting loss function.

5

3.3 Model fitting method

To evaluating and comparing our model result with base line model, we have to convert our
result back to point estimate. Since the result generated from our model is a distribution, we
have to pick one most possible value from it. The easiest thing to do this is by using the majority
voting strategy. However, when the result gives us some same voting number for several indexes,
it seems not fair to just pick the one which has little advance than others. Thus, we use the
Gaussian Mixture Model(GMM) to pick the right value for us. The idea shows in []. It is
worthy of mentioning that sometimes, the voting result may generate two peaks for prediction,
which can only be detected from GMM rather than majority voting. Ar voting strategy we have
mentioned previously, we also test two other nonlinear voting strategy. Their converted shape
is showing below:

(a) Voting result (b) One peak voting (c) Two peaks voting

Figure 6: Gaussian Mixture Model

4 Future work

In this project, we used fixed parameters (mask, length), but ideally, those parameters could be
adapted by the distribution of our data set. For example, outliers in the sample should have a
longer mask length since our model is less confident about predicting those value. Also, for bias,
our result dose not provided a demonstration that the bias exists in square error, or is improved
with the multi-task loss. More experiments need to be done to confirm this idea.

A code description

We successfully test our voting loss function in a multilayer perceptron model for one house
price data set1. Here is the link to our code: https://github.com/kriszhao/Voting-loss-

function.

References

[1] Christian Hennig. Some thoughts about the design of loss. Main, 5(276):1–19, 2007.

[2] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. (May),
2017.

[3] Jonathan T. Barron. A General and Adaptive Robust Loss Function. 2017.

[4] David Parks, J. Xavier Prochaska, Shawfeng Dong, and Zheng Cai. Deep learning of quasar
spectra to discover and characterize damped Lyα systems. Monthly Notices of the Royal
Astronomical Society, 476(1):1151–1168, 2018.

1https://github.com/kriszhao/Voting-loss-function/blob/master/kc_house_data.csv

6

[5] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

[6] Cam Davidson-Pilon. Bayesian Methods for Hackers. 2014.

7

