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Abstract

Currently, seq2seq models have been found to assign its global best score to the empty translation,

revealing a massive failure of neural models in properly accounting for adequacy. A number of

methods to fix this problem have been proposed. In this project, we focus on analysing the search

errors and model errors in neural machine translation (NMT). The goal is to optimize the model by

avoid generating < STOP > token too early. Our experiments are based on the encoder-decoder

approach with soft attention to translating between different languages. We apply the the classic

structured perceptron loss to neural sequence to sequence models. Using Beam and DFS search

algorithm to do an approximate and exact inference procedure for neural sequence models. Our

results shows that for a small data set, an encoder-decoder approach model trained to convergence

with early-stopping on a development set does not suffer this problem.

ii



Acknowledgements

This work was done under the supervision of my advisor, Jeffrey Flanigan. Since I started working on

my masters research, I have learned much about machine learning and natural language processing

from him, and I appreciate his guidance and encouragement.

iii



Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Methods 2

2.1 Stop criterion on the dev set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Teacher Forcing in Sequence-Level Objectives . . . . . . . . . . . . . . . . . . . . . . 3

3 Experiments 5

3.1 Data used in Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Conclusion 9

Bibliography 10

iv



Chapter 1

Introduction

There has been much recent works (Meister, Vieira, & Cotterell, 2020; Edunov, Ott, Auli, Grangier,

& Ranzato, 2017) on improving upon beam search for neural sequence-to-sequence models. Surpris-

ingly, beam search fails to find these global best model scores in most cases, even with a very large

beam size of 100. For more than 50% of the sentences, the model in fact assigns its global best

score to the empty translation, revealing a massive failure of neural models in properly accounting

for adequacy.

Most state-of-the-art results on machine translation tasks are attained using beam search despite

its overwhelmingly high search error rate. The paper Stahlberg & Byrne (2019) points out that the

recurrent LSTM, the convolutional SliceNet (Kaiser, Gomez, & Chollet, 2017) , and the Transformer

Big systems are strong baselines from a WMT 18 shared task submission (Stahlberg, de Gispert, &

Byrne, 2018) which we include in Table 1.1 and Table 1.2.

Model(Beam10) Bleu SearchErr

LSTM 28.6 58.4%
SliceNet 28.8 46.0%

Transformer-Base 30.3 57.7%

Table 1.1: Beam search fails to find these global best model scores in strong baselines from a WMT’18
shared task submission.

Model(Exact) Empty

LSTM 47.7%
SliceNet 41.2%

Transformer-Base 51.8%

Table 1.2: For About 50% of the sentences, the model in fact assigns its global best score to the
empty translation, revealing a massive failure of neural models in properly accounting for adequacy.
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Chapter 2

Methods

In this project, we’re trying to fix the problem that an exact decoder gives zero length outputs

for neural machine translation (NMT) models. The decoding objective for NMT aims to find the

most-probable hypothesis among all candidate hypotheses. To achieve this goal, we could optimize

the loss functions that are either computed over individual tokens, over entire sequences or over a

combination of tokens and sequences. An overview of two classic loss functions is given in Equation

2.1 and Equation 2.2.

Token Negative Log Likelihood (MLE) Token-level likelihood (MLE, Equation 1) minimizes

the negative log likelihood of individual reference tokens ỹ = (ỹ1, . . . , ỹn) . It is the most common

loss function optimized in related work and serves as a baseline for our comparison (Chen et al.,

2019). This method work with the normal RNN training method, where the decoder is trained to

predict based on p(yi|y1 . . . yi−1,x).

LMLE = − log p(ỹ|x)

= − log

n∏
i=1

p(ỹi|ỹ1, . . . , ỹi−1,x)

= −
n∑

i=1

log p(ỹi|ỹ1, . . . , ỹi−1,x)

(2.1)

Sequence-Level Objectives (Perceptron) A sequence-level training loss that enables com-

parisons between the entire generated and reference sequences. The Perceptron loss function (Collins,

2002) is motivated by the fact that if the training data can be perfectly classified, the function could

directly minimize 0/1 prediction on the training set (Flanigan, 2018) . Let ỹ be our reference se-

quence, and ŷ be our model prediction. (D, θ) are model search space and model parameters. For

this loss we use the unnormalized scores computed by the model before the final softmax.
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LPerceptron(D, θ) = −score(ỹ|x) + max
ŷ∈D

score(ŷ|x)

=

n∑
i=1

−score(ỹi|ỹ1, . . . , ỹi−1,x) + max
ŷ∈D

n∑
i=1

score(ŷi|ŷ1, . . . , ŷi−1,x)
(2.2)

In the greedy approach for percetron loss, we could use the beam size equal to one for the training

process.

LPerceptron−Greedy(D, θ) =

n∑
i=1

−score(ỹi|ỹ1, . . . , ỹi−1,x) + max
ŷi∈D(ŷi)

n∑
i=1

score(ŷi|ŷ1, . . . , ŷi−1,x)

=

n∑
i=1

−score(ỹi|ỹ1, . . . , ỹi−1,x) +

n∑
i=1

max
ŷi∈D(ŷi)

score(ŷi|ŷ1, . . . , ŷi−1,x)

(2.3)

2.1 Stop criterion on the dev set

Despite the decoder is optimized to give the highest score or probability to most-probable hypothesis

in the model search space, somehow the model is still incorrectly predicting score(< START >,< STOP >|x)

too high. It is possible that the model hasn’t been trained to convergence, and that is why

score(< STOP > | < START >) is higher than it should be. For an RNN, wT
<STOP> and vT<STOP>

are both the layer weights, b<STOP> is the bias term for the < STOP > symbol.

score(< STOP >|ht) = σ
(
wT

<STOP>xt−1 + vT<STOP>ht−1 + b<STOP>

)
In inference time, simply adjusting the model < STOP > bias by a constant value does not help

resolve the empty translation issue, since every complete sentence is ended by < STOP >. The score

for every possible output sentence is adjusted by reducing same amount of values.

To fix this, we have to train the model further to adjust the layer weights by using early-stopping

and dynamically changing the learning rate based on the performance of dev set. For the evaluation

metric, we care about the highest BLEU score model instead of the loss value.

2.2 Teacher Forcing in Sequence-Level Objectives

By far the most popular training strategy is via the maximum likelihood principle. In the RNN

literature, this form of training is also known as Teacher forcing (Williams & Zipser, 1989), due to

the use of the ground-truth samples ỹi being fed back into the model to be conditioned on for the
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prediction of later outputs. These fed back samples force the RNN to stay close to the ground-truth

sequence and improve model skill and stability.

In equation 2.2, we need to find the highest score among all candidate hypotheses. However, the

NMT search space is vast as it grows exponentially with the sequence length. For example, for a

common vocabulary size of |τ | = 32, 000, there are already more possible translations with 20 words

or less than atoms in the observable universe (3200020 � 1082). Thus, complete enumeration of the

search space is impossible. We have to use a simple search heuristic, beam search to decode models.

However, there is no formal guarantee that beam search will return or even approximate the highest

score candidate under a model. In practice, beam search often fail to find a higher score than the

model score of our reference sequence when the beam size is not big enough.

We introduce a variant of the structured Perceptron algorithm 2.4 but trained with Teacher

forcing. We observe that this algorithm is actually optimizing towards the token level after applying

the Teacher forcing on the perceptron loss. Instead of searching higher score among all candidate

hypotheses, we can use the model output from a prior time step as an input and choose the highest

output score as current step score. This approach ensures that we will get a higher score than the

model score of our reference sequence since the hidden state for each step will be the same and we

always pick the highest score for each step rather than the score for the next correct output token.

LPerceptron−TeachForce(D, θ) =

n∑
i=1

−score(ỹi|ỹ1, . . . , ỹi−1,x) +

n∑
i=1

max
ŷi

score(ŷi|ỹ1, . . . , ỹi−1,x)

=

n∑
i=1

(−score(ỹi|ỹ1, . . . , ỹi−1,x) + max
ŷi

score(ŷi|ỹ1, . . . , ỹi−1,x))

(2.4)

By applying this technique, we show we can reduce the training time of perceptron model dramati-

cally, and ensure the loss is no-negative value.



Chapter 3

Experiments

The motivation for our experiments is to investigate the reason for the empty translation and possible

approaches for alleviating this issue. We use the BLEU score as our stopping criterion for training

which means the highest BLEU score model will become our best choice. We also have a comparison

of Token-level likelihood model (MLE) and Sequence-level perceptron model. In order to improve the

computational convergence rates and statistical efficiency, we introduce a variant of the structured

Perceptron algorithm 2.4 but trained with Teacher forcing as an improvement upon the vanilla

Perceptron algorithm for training sequence-to-sequence models.

3.1 Data used in Experiments

The data for this project is English to French translation pairs which are collected from the open

translation site Tatoeba.1 It is a large database of sentences and translations. Its content is ever-

growing and results from the voluntary contributions of thousands of members. You can also find

the extra work of splitting language pairs into individual text files here.2 We sampled sentence pairs

from the original dataset with the length constrain of 10 tokens per sentence and prefixes constrains.

And the total number of counted french tokens is 4345; the total number of counted english token

is 2803.

Language Corpus Sentences Tokensfr Tokensen

French-English Train 8479 2587 3944
French-English Dev 1600 975 1183
French-English Test 1600 934 1174

Table 3.1: Corpora

1https://tatoeba.org/
2https://www.manythings.org/anki/
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3.2 Model

The neural network architecture in our experiments is the Encoder Decoder network with soft atten-

tion, which is a model consisting of two RNNs called the encoder and decoder. The encoder reads an

input sequence and outputs a single vector, and the decoder reads that vector to produce an output

sequence. For our small dataset we can use relatively small networks of 256 hidden nodes and a

single GRU layer. For each model, we restricted the number of training epoch to 20 epochs and set

initial learning rate as 0.01. We used the library torch.optim.lr scheduler from pytorch to provide

several methods to adjust the learning rate based on the number of epochs. Decays the learning rate

of each parameter group by gamma 0.95 every step size epochs. Notice that such decay can happen

simultaneously with other changes to the learning rate from outside this scheduler. For optimizer,

we use the SGD with momentum 0.5.

3.3 Results

Our experiments in Table 3.2 show that MLE models have a better Bleu score than Perceptron

models under the constrain of 20 training epochs. And the Figure 3.1 shows that perceptron model

has a slow convergence rate which could suggest that the perceptron model is not fully trained yet

after 20 epochs, even though the teacher forcing technique works for both loss functions at first 20

epochs. Also, compared with results from Table 3.2, perceptron models have a lower Bleu score in

the exact decoding scenario in Table 3.3. Since our dataset is very small, we could relatively easier

train it and test the model under the exact decoding method. In fact, the empty translation is not

an issue in our experiments under the exact decoding scenario.

Model(lr = 0.01) Bleu LengthRatio

MLE-noTF 49.8Greedy 1.003
MLE-onlyTF 51.3Greedy 1.002

MLE-Combined 49.7Greedy 0.977
Perceptron-noTF 38.4Beam12 1.033

Perceptron-onlyTF 37.8Beam12 1.007
Perceptron-Combined 38.2Beam12 1.005

Table 3.2: NMT with approximate inference method on models with Token Negative Log Likelihood
(MLE) and Sequence Negative Log Likelihood (SeqNLL). Due to the slow training speed, we only
trained each model for about 20 epochs. The results suggest Perceptron model is harder to train
and suffers from slow convergence.
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Figure 3.1: Cost changes during training in terms of the number of epochs. Cost represents the sum
of 1 - score(Sentence-blue) for the whole validation set. The result shows that the teacher forcing
technique works for both loss functions at first 20 epochs.
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Model(lr = 0.01) Bleu(Exactappro)

MLE-noTF 50.2
MLE-onlyTF 52.4

MLE-Combined 50.4
Perceptron-noTF -

Perceptron-onlyTF 31.2
Perceptron-Combined 30.2

Table 3.3: A model trained to convergence with early-stopping on a development set has a better
BLEU score under exact search and will not prefers the empty translation. Bleu(Exactappro) is the
exact decoding under the time constrain for 5 seconds per sentence.
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Conclusion

This work is motivated by the problem in training Seq2Seq models: the model often prefers the

empty translation – an evidence of NMT’s failure to properly model adequacy. Inspired by Teacher

forcing technique, we propose the usage of the prior time step’s ground truth as input for training

a sequence-level loss to improve Seq2Seq learning. There are some important observations in this

project:

1. Empty translation should not be an issue for a model trained to convergence with early-

stopping on a development set.

2. Teacher Forcing can be applied in the Sequence-Level Objectives (Perceptron) and helps the

model converge faster.

3. Teacher Forcing technique can mitigate the issue of empty translation by improving the model

computational convergence rates and statistical efficiency.
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